Stability Properties of the Class of Banach Spaces in Which All Multilinear Forms Are Weakly Sequentially Continuous*
نویسندگان
چکیده
A Banach space X is said to be an M-space if every continuous multilinear form on X is weakly sequentially continuous. We study in this paper the stability properties of the class of M-spaces. 2000 Mathematics Subject Classification. 46B20, 46B28, 46B08.
منابع مشابه
Critical fixed point theorems in Banach algebras under weak topology features
In this paper, we establish some new critical fixed point theorems for the sum $AB+C$ in a Banach algebra relative to the weak topology, where $frac{I-C}{A}$ allows to be noninvertible. In addition, a special class of Banach algebras will be considered.
متن کاملHomomorphism Weak amenability of certain Banach algebras
In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملA Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کامل